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I. Introduction

Mountain-valley wind circulation has long been of interest to
inhabitants in mountainous areas and meteorologists. Yet it has not been
fully explored and understood. Various daily operations require much more

detailed meteorological knowledge than in the past. In particular, an

accurate short-range small meso-scale 3-~dimensional prediction model is
needed over mountain-valley terrain. Aiming at this goal we shall divide
the investigation into three taske: 1)to develop a 3-dimensional numerical
model with the initial value approach and to study the basie physics in
this particular kind of local wind system, 2) to compare results from the
numerical model with some simple analytical solutions and available obser-
vations, and 3) to build a short range meso-scale prediction model for
mountain~valley wind systems,

This report discusses problems associated with the first task and
partially with the second. The last task and part o: the second one shall
be studied as a continuation of the tasks presently undertaken and will be
completed in the next phase of investigation.

Theoretical and numerical studies of flow over a small mountain ridge
have been numerous. The most recent studies by Mahrer and Pielke (1975,1977)
and Clark are interesting. However, the boundary layer problem, such as
flow in a typical valley region, needs further attention and investigation,
Both theoretical and numerical sutdies of mountein-valley wind systems for
a typical 3-dimensional meso-scale mountain-valley terrain have been seldom

found in the literature. lew intrigue linear or non-linear interactions




between the free atmospheric flow and the thermally induced flow near the
surface in a typical valley have been reported except for the work by
Tang(1976), Tang and Peng(1974) for 2-dimensional ones, and over generél
mountain-basin situation by Mahrer and Pielke(1977), Studies onvthe inter-

e

play between the slope wind or the cross-valley flow and the'vailey wind
(along the valley axis) are completely lacking in the literature.

In studying mountain-valley wind systems the non-hydrostatic approxi-
mation is believed to be important bec#use.of the basic convective nature
of the problem, especially when horizontal and vertical scales become com-
parable. Since this investigation emphasizes the study of the flow in the

boundary layer, computations with parameterizations under various meteorc-

logical conditions for the present model have been performed. The develop-
ment of the numerical model is presenteu in Section II, Results of the
numerical modeling under various conditions are presented in lection III,
Some available observational data will be used for compsrison and discussed
at the end of Section III, Discussion of the study and future study will

be in Section 1IV.

II. The development oI numerical model

1) The differential equations

In order to simulate circulation over a valley terrain, the configura-
tion of the relief and the slope of the topography are believed to be critical,
In contrast to tiue study of lee waves' for which linegpized lower boundary
surface condition may be used to obtain a general plcture of the wave pattern
in the middle of the atmosphere, non-linear lower boundary conditon should be
used here. PMurthermore, a set ot equations should have coordinates trans-

formed so that it can be used for arbitrary terrzin. A generalized o «

e




coordinates in 2z is taus used in the model. The basic transformation is

2! - 38 - "\1’147
s W = hixne)

where 2 = height in rectangular coordinate system,

(1)

z'= height in transformed coordinate systenm,
h(x,y)=terrain height profile in regular rectangular (x,y,z) coordinates,

and H = height of tor boundary over horizontal ground for the model.

With this transformation we obtain the following relationships:
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Note that the square brackets with subscripts have special meanings in the equations,

Similar results can be obtained for the differential with respect to y. A
set of governing differential equations for an incompressible atmosphere
with Boussinesq approximation, after chopping off the prime for transformed

1 coordinates, can be written as:
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where ( )¢, ( )2' etc = partial differential with respect to t, and z, ete

respectively in transformed coordinates.

u,v,w = velocities in the x-, y-, and z- axes directions,




and @

pressure deviation from the mean at a given height

en’ (7n= c),(é_))‘ 2 v/ = ;r..'/'f)

2) The topography
The 2-dimensional valley cross-section and mesh in the x-z plane at
¥=0 is shown in Figure 1. The x-axis oriented in the cross-valley direction,
the y-axis, in the down-valley direction, and the z-axis, in the vertical
direction pointed upward from the gound surface. The grid intervzl in the
vertical direction from ground up are 50,50,100,300,500,1000 m up to the

i sixth grid and 1000m thereafter for every grid interval up to 10km level.

The grid size in the x- or y-axis direction is even but is different for

different computer runs. The grid size in the x-axis direction ranges from

333m to 8km, and in the y-axis direction, from Skm to 15km depending upon
t the run. Experiments with combinations of different size grids in the x-
' and y-axes ' directions are made for purposes of comparison. The time interval
f chosen depends upon the grid size used in order to fulfil the Courant-Fric¢drichs
-Levy linear computational stability criterion.

The height of ridges above the valley floor is assumed to be constant

in the y-axis direction, but it varies from case to case, ranging from 100m

to 1.5km. The height of valley floor at the valley head is 300m above that

o T ———————
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at the valley mouth at the bottom of the valley. The cross-section along

the valley floor is shown in Fig. 2.

3) Boundary layer

it T

Since mountain-valley systems are largely affected by differential
heating and terrain features, some fine turbulent characteristics over
the uneven lower boundary are indeed importsnt to the investigation. It

would be interesting to have some good knowledge of verticel and horizontal

o A AR



eddy viscosity and diffusivity particularly suited to the valley terrain.
Unfortunately, little literature about this in a valley is known. Because
of lack of the precise knowledge in this matter, the eddy viscosity and
diffusivity over homogeneous plane surface formulation may be adapted or

a simple constant with a relatively large numerical value is to be used.

The relatively large value is used because of the basically strong turbulent
nature over rough mountainous surface. In this report we have undertaken
the study with both approaches.

Adapting the basic formulation due to Businger(1973), we can compute
eddy viscosity and diffusivity by solving well-known ejuations. We first
determined the Richardson number,Rj, from the mean win: speed at one height
(say the first grid point above ground surface) and temperature at two

heights (say, first grid level and surface). By using the profile Richard-

= ¢ / v/ y* s
son number, R, = %_5—2- (%_él) , may be expressed as

N\ /4
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where 2 is non-dimensional height which is the ratio of the height above
the ground, z, and the Monin-Obukov length. Determining 2 from the last
equation and therefore Monin-Obukov length from formula L = 2/ Z lead

to the determination of non-dimensional momentum and temperature, Jé» and

4) respectively, from the following relationships with f,
[
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The integrated version of the profiles are, respectively,
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The values of ¢m and ¢9 will allow first determination of ’l//

’l}"‘_ through the above set of equations and then u¥ and 9,; with

known z, and & (z,). Once 9.); and -y are determined, we determine
vertical eddy viscosity and diffusivity, Kv(m) and Kv(g) respectively

in the surface layer by
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tions. Above the surface layer we use O'Brien 's (1970) interpolation,

i.e. let K stand for Kv(m) or Kv(e»

O
K=K,; +

('i'f-i) K(3)— W(Z 1 (14)
% 3 Ke-Ka,

depth of the surface layer,

where ¢;—

o
Kv(zi) will be set { cm,zsec‘1 and 24 will be forecasted by an equation

the height at the top of the planetary boundary layer.

proposed by Deardorff(1974) and tested by Pilelke and Mahrer(1975).

3 3
az“ s 32,.,‘ i ’uk(”ﬁ "'/-) ui‘s "3'3”# J&A) (15)

——_— = et
2 2% g 27
3%‘-%% + QW 4 0.2 0t
- i/ Ys
where - {( %;WQV%&) 2 By &0
s A o 9¥>0
gt
[ AL the stability immediately above 2z

22
Wy = the vertical velocity at z4.

The depth of the surface layer, E-, will be taken as 0.04 zj.

The determination of these quantities is consistent with additional assump-




4) The boundary and initial conditions
At the top boundary where z = H = 10km, the horizontal velocity is
specified as u = U and v = 0, Since the top boundary is taken as a flat

solid surface, it is natural to assume

26
w =l = =0
=4

At the ground it 1is assumed that no slip condition is used for wind
{i.e. u=v=w=0)., The air temperature at surface can be calculated from the
energy balance equation at the ground. In order to apply the present model,
an analytical expression of the ground surface temperature and heat flux
at each small time step in terms of solar and long wave radiation, geome-
trical factors of the terrain, and initial surface temperature has been
derived. Letails of the investigation is shown in Appendix &. In this
report, however, only specified temperature variatior on the ground are
used. The computed temperature will be incorporated into the present model
in the next phase. The boundary conditions for §[ can be obtained from
the third equation of motion. At lateral boundaries all are assumed to be
periodic.

The initial condition is chosen such that all quantities are zero in
space except for the specified vertical distribution of mean U with height.
In order to avoid the creation of relatively strong disturbances at the
initial stage, we let the mountain be flat in the beginning. More details

will be discussed in subsection (5).

5) Other numerical considerations
The forward time difference and center space difference in general

are used. Except for §; , all dependent variables are evaluated at each grid




point.Eq. 4 is solved by the block relaxation method.'Because of reflection
of spuribus energy of the internal gravity wave from the upper boundary
originally set up by mountain valley terrain, the reflected wave energy -
leads to undesirable computation results. Ihe spurious wave energy can

be partly eliminated by introducing some Rayleigh friction hear the upper
boundary. ‘he Rayleigh friction terms may be writtem as <k(u-U), and

-kv 1f V = 0, In addition, since the horizontal eddy exchonge terms are
not included in the model, a simpler smoothing approach is used instead.

A three-point smoothing formula for each variable is given as follows:

F ==[/-§)F.—+S[E,—+F. 1/
XY K

4-',, ,;r

where s is a constant to be chosen.

As mentioned in the preceeding sub-section, the mountain was assumed
to be flat initially and will be gradually built up over 26 time steps
until the final desired ridge heights are reached. The undesired initial

disturbance can be eliminated.,

III. Computation results

Several computer runs were made fo} a combination of various boundary
conditions for both wind and temperature, different geometric-l factors of
the mountain-valley terrain, and different turbulence parametrization in
the surface layer. Table 1 shows the various basic inputs for diffbrent
runs., In each computer run, the isopleths of the three wind components
u, v, w, and T for cross-sections in the x-z plane at J = 7 and/or J = 4
are illustrated. The x~, y-, and z-axes directions represent the cross-

valley horizontal, but pointing toward upvalley, and vertically upward

10
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directions, respectively. To be explicit, a positive u is the horizontal
wind blowing from the left to the right in Fig. 1a; a positive v is the
horizontal wind blowing upvalley into the paper; a positive w is the vert-
ical wind blowing bottom upward. The cross-section at J = 7 will illustrate
the circulation and thermal situation for the middle of the valley and
the eross-section at J = 4 will illustrate the information at the lower
part of the valley. At J = 4, the valley floor and side ridges start to
lsvel out. Several cases, e.g. Figs. 10,11,12, show that the height of
the valley side ridges above the valley floor start to drop to zero at J =4,
In other words, there is a completely flat plain between J=1 and &4, while
a valley slope exists from J=# to 10. Between J=10 and 11 it is a flat
plateau. The horizontal grid size and height of ridge above the valley
floor vary from case to case although the same diagram is used. The vertical
grid size is fixed. Therefore the mountain scale is somewhat out of pro-
portion with the mesh scale used in the illustration. The isopleths for
u,v,w. are isotechs of the correspondiny wind components in m sec=!, The
isopleths for T are temperature deviations from horizontal mean in ©C,
Since the gradients of these quantities can be very large, the intervsl of
isopleths used in the following figure are not always uniform and all iso-
pleths will be labeled. v

Results of Run # 1 are shown in Fig. 3. The striking feature is
the tilt of positive and negative axes of u, w, and T toward the upstream
direction (negative x-axis) of the basic flow. The maximum +u is correlated
very well with the -w and =T éver the lee near the ridge. In 3a an area
of negative isotech was situated near the center of the valley but it covers

nearly hall the windward slope. This signifies the development of the

1"
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return flow and a separatedcell near the bottom of the valley, when the

resultant wind in the x-z plane is computed by using the w-component,

The development is possible because a negative and a positive w area are
situated over the windward and small part of lee siope in the bottom center
of the valley. Owing to the tilts of the u and w fields, waves in the

X-z plane at J=4 and 7 with tilts axes resulted, similar to many mountain
wave patterns., However the wavelength is larger but the corresponding wave
amplitude is smaller because the present boundary conditions are somewhat
different from the typical investigation of mountain wave problems. Ebr
the small or meso-scale circulation, the periodic condition seems to be -
more reasonable than the boundary conditions used in the mountain wave .
studies with a single mountain.

Cross-scctions of the flows in the valley axis direction at J=4 and
J=7 are shown in 1.b and 1.f. It is found that the upvalley flows are
maximum near the center of the valley at about 500m above the valley floor.
In comparing the magnitudes of v at J=% and at J=7, the magnitude of v
component is greater halfway along the valley (J=7) than near the valley
mouth (J=%). Comparison of resultant u and w in the x-z plane show there
is not much difference in strength.

The temperature deviation from the mean, T, for cross-sections at
both J=4 and J=7 are of little difference. Again the inclination is to-
ward the upstream direction. Large negative T covers most of the windward
slope, whereas a very small section is found near the ridge at the lee.
For the center of the valley from the ground up to 2km are positive values.
The 2-dimensional results obtained here are reasonable and similar to

results obtained by Tang (1976).

12
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Run # 2 is computed for a 24km wide valley and a valley slope of
7x10=3 terrain for about 2 hours and is shown in Rg. 4, Except for the
relative narrowness of the valley and the steeper slopes both in the valley
sides and axis directions, the assumptions are basically the same. The
patterns o! u and w are similar. The wind speeds u at lower levels are
relatively small. The v component, however, near the center of the valley,
is about 0.30m sec~1 higher. The level of maximum v is again about 500m
above floor. At the 4 to 5 km level there is a return flow in the down-
valley direction and it appears very reasonable. The appearance of the
T field has changed somewhat and is dominated by positive deviations. The
negative area shrinks., The air returns warmer in the valley center than
over valley sides. The general warming is believed to be attributed to the
stronger downward motion above the steeper slope of the ground.

An even narrower and steeper valley is used as a terrain model for
the study. The width is 4 km and the valley slope is 33x10'3. Since the
time interval used for the integration cannot be larger than 5 sec, only
about 29 minutes (350 steps) of computation have been made for this run.
The appearance of the patterns have changed somewhat. The axes become less
inclined than the first two cases. The u component nsar thelcenter of the
valley becomes even smaller than that near the ridge level. The return
flow region remains in the center of the valley and over the windward slope.
The positive and negative w fields become distributed more or less verti-
cally over the windward and leeward slopes respectively. The center of
maximum magnitude is about 2km above both slopes betweem the ridge and the
center of the slopes. The maximum magnitude is about 3.5 m sec=1, There-
fore the troughs of the wave in the x-z plane will be more or less vertical

The maximum amplitude of the wave is about 2km above valley side slopes,

13
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The T field has large negative values near the center but is warmer than
over the slopes. The coldest spot in the air is near the top of the wind-
ward slope, The flow in the horizontal direction of the valley axis
direction is largest for the last cases. The maximum valley wind is about
1.5m sec~1 betwagn 200m and 500m above the ground, the maximum down-valley
wind is about 1.4 m sec-! at about 5 to 6 km above ground.

The first 2 cases are computed for a sloping valley. The top and bottom
of the §alley are assumed to be horizontal by assuming that the variations

of all quantities in the y-axis direction are zero. Ffor the following cases

. the boundary conditions in the y-axis is again assumed to be cyclic, Mr

Runs 4, 5, 6 and 7 the height of the ridges above the valley floor is cons-
tant, but it may be a different constant for different cases. Other runs
are for cases where the height of the valley side ridges start to drop off
from position at J=7 to zero at J=%, a typical valley-plain topography.
Runs #% and #5 are for valley with a 64 km wide valley. Run #4 is made
with a warmer valley slope which cools with an assumed rate as time goes
on. Results are illustrated for cross-section at the middle of the valley
slope where J=7 at time 20100 sec ( ~ 5 hrs). Run #5 is made with a heating
case. The axes of these patterns are slightly inclined downstream of the
basic flow. However, since the vertical velocity field w is very weak
and 1s essentlially vertical, the wave trough will remain vertical,and
energy propagating downward is negligible. The characteristics of the
return flow for these cases are again in agreement with earlier findings.
The intensity under the cooling condition is stronger than that under the
heating condition. The flow along the valley is toward the down and up
valley directions for Runs #4 and #5 respectively. This is reasonable.

The down-valley component (-3.5 m sec~!) in the cooling case is stronger

14
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than the up-valley flow (+2.4 m sec~!). This is in general agreement with
observational results obtained in Vermont valleyss

Similar to the assumption used in Runs 4 and 5, Runs 6 and 7 are com-
puted with a valley only half as wide as the valleys in Runs 4 and 5. In
comparing these two sets, again patters are very similar to corresponding
cases and a similar conclusion can also be drawn. Between Runs 4 and 5 the
cooling surface condition leads again to stronger intensity than with the
heating condition.

Runs #8 and #9 are computed for u, v, w, and T at position J=7 under
the same assumption except for the corresponding surface cooling and heat-
ing conditions on a realistic valley-plain terrain. The variation with
time in each case are illustrated by the results obtained at t=10100 sec
and at t=20100 sec. The one with the cooling surface condition produces
stronger intensity than the one with the heating surface condition in
general. As time incre.ses to about 5.5 hrs, nothings changes noticeably.
The only quantity that is intensified is the upvalley or downvalley flow.

Run #10 is the experiment with surface layer formulation based on the
equations used in Section II.3. Since the time step has to be very small
when the surface layer formulation is included, computation has been made
for 756 sec, Results are shown in Fiz. 12. The patterns of the isopleths
are very similar to those shown in Fig. 4 except that the basic wind
profile in the vertical direction decreases with height in the upper layer,
which can be attributed to the input profile and small mountain slope used
in Fg. 4. It appears that using the surface layer formulation has made
little difference upon the gross features of the circulation. However,

further experiments including the surface layer should be pursued.
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The present numerical model has produced several interesting and en-

couraging results of a three-dimensional model for mountain-valley wind
systems. By no means is tois an ultimate model for prediction. Wwhile
pursuing the improvement, some results obtained here mzy be used for come
parison with observations available at hand. Based on studies by Davidson
(1960), for a valley with ridge height of 800m the maximum winds are found
at about 400m level which is halfway to the ridge level. The comp-rison

of the level of maximum down-valley wind with the results obtained here is
shown in Fig. 13. With the assumed topography used here we have obtained
the maximum down-valley wind, generally occuring at the 500m level which

is in close agreement with observation. Even for many computations the
down-valley wind speed is smzll, . the level of maximum remains in the
neighborhood of the middle level of the valley. In the slope wind theory
for an infinitely long slope the level of maximum wind is only sbout 50m
above the ground. It cannot' be used to explain the valley wind phenomenon.
A simple three-dimensional linear theory cannot explain this phenomenon either.
It is believed that the non-linear theory has a contribution to this con-

clusion.,

IV. Discussion

The numerical model developed in this study has included the non-
nydrostaticAassumption and turbulencé parameterizations that are believed
to be important in the study of mountain-valley wind systems of steeper
terrain. The computations yield reasonable results in the three-dimen-
sional flow over a typical mountain-valley terrain. The mountain-valley
wind system resulted from the non-linear interaction between the thermally

induced flow in the valley and the upper air flow of the larger scale motion.

16




This model produces the following conclusions:

1) The positions of the return flow or separated cell in the vallsy obtained

in this study is in agreement with the earlier study.

S —

2) The imposed nighttime thermal surface condition produces down-valley
wind, the imposed daytime thermal surface condition produces up-valley wind.
3) The maximum down-valley wind level is about 500m, for a ridge 1km above
the valley floor.

4) The up-valley wind is relatively weak as compared to the down-valley
wind speed while the other conditions remain the same.

L 5) The component of eross-valley wind is maximum at the lee near the ridge,

or above the ridge. ;
6) The wave flow pattern in the upper part of the troposphere is similar é
to some earlier findings.

In the future studies, continuous effort will be placed on the improve-
ment of the accuracy of the model. This msy be corrected by modifying
the present computation scheme and increasing the numbers of:the horisontal
grids. In order to be more realistie, cyclic boundary conditions will be
modified so that they can be applied to actual conditions. First we will

conduct a study based on an analytical model of two mountain ridges and

sloping valleys, then later compare the results from the numerical and

theoretical models. Actual observational data from the Tularosa Basin ill te used to

validate the results. Finally an attempt will be made to build a predietion

? : model for the Wnite 3Sands Missile Range.

17
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Basic inputs for different computer runs

Geometrical factors of terrain

Surface thermal condition

The number Maximum ridge height| Valley[ Valley | Cooling| Neutral] Heating
of run' and| above valley floor width | slope
time (sec) and floor height (km) (x10-3)
above plain (m)
1 (5100) 10004300 4 6.6 *
2 (7550) 1000-300 24 13 »
3 (1750) 100046C0 n 33 *
L (20100) 1C00+600 64 10 *
5 (20100) 10004600 | 64 10 *
6 (22500) 10004300 32 10 o2
7 (22500) | 10004300 32 10 *
| |

8 (10100- | 5004150 i 64 2.5 N

20100) ¥ .

*

9 (10100~ 5004150 o4 2ed

20100)

*®

10 (750) 10004600 8 20
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Table 1 (continued)

Initial Initial cross} Values of coefficients|Lateral boundary
s ground valley wind of eddy viscosity and |conditions
temperature |speed profile| diffusivity
ascendant O H ) & '3.>
Run ——f By 21 8108 no
! Number] Pos| Neuty Neg.|2 1 5| 5§ g K (m?sec~1) gradient] cyclic
Sq |~
L '
E I 5] §
1 g = 10 10 *
2 3 » 10 10 *
3 * * 10 20 i
4 * * 1C 10 ¥
} 5 * * 10 10 i
|
‘g 6 . . 10 20 .
’ 7 * * 10 20 *
i 8 * * 10 10 *
9 ” * 1C 10 »
10 * e variable *
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Fg. 3. Isopleths of wind components and temperature deviations
for Run #1 at J=4 (a tod) a.u b.v e¢. w d. T
and at J=7? (e toh) e.u f. v g.w d. T
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Rg. 4. Isopleths of wind components and temperature deviations
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and at J=7 (e toh) e.u f. v g.w h.T
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Fig. 5. Isopleths of wind components and temperature deviations
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Fig.12, Isopleths of wind components and temperature deviatiens
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1. Introduction
The diurnal surface thermal condition has been Shown to ‘

be an important controlling factor on daily circulation in the pla-

‘netary boundary layer.

Recent investigations of mountain-valley circulation by
Tang(1976), and by Tang and Peng (1974) with a numerical médel, show
that thermal boundary conditions have an essential influsnce on cir-
culation in the boundary layer. The assumption on the thermal bound-
ary condition for their investization is a prescribed surface temp-
erature ér heat flux at the ground surface. Since the mountain-valley
terrain consists of unsven surfaces such as slopes, ridges, and valleys,
tho amount of solar and long-wave radiation over these surfaces is
difforent from that on a horizontal plane. Incorporatiﬁn of a variable
surface heat flux in the study would make it a very complex problem. A
most realistic mountain-valley circulation model considering this temp-
orally and spatially variable surface beat flux is yet to be developzd.
The purpose of this study is to derive an analytical expression of the
ground surface temperature and heat flux, at each small time step, in
terms of solar and long-wave radiation, geometrical factors of the ter-
rain, and initial surface temperature. The result can be utilized for
a numerical experiment of atmospheric motion and temperature over é
simple mountain-valley terrain.

. In two previous studies Fuh (1959, 1964) invesitgated the
influence of a sloping surface on radiation. the present study develops

a method for obtaining surface temperature by solving the equation of
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. The diurnal surface thermal condition has been shown tq.'
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netary boundary layer. :

Recent investigations of mountain-valley circulation by
Tang(1976), and by Tang and Peng (1974) with a numerical médel, show
that thermal boundary conditions have an essential influsnce on cir-
culation in the boundary layer. The assumption on the thermal bound-
ary condition for their investigation is a prescribed surface temp-
erature gr heat flux at the ground surface. Since the mountain-valley
torrain consists of uneven surfaces such as slopes, ridges, and'valleys,
the amount of solar and long-wave radiation over these surfaces is
difforent from that on a horizontal plane. Incorporatiﬁn of a variable
surface heat flux in thes study would make it a very complex problem. A
most realistic mountain-valley circulation model considering this temp-
orally and spatially variable surface heat flux is yet to be developeod.
The purpose of this study is to derive an analytical expression of the
ground surface temperature and heat flux, at each small time step, in
terms of solar and long-wave radiation, geometrical factors of the ter-
rain, and initial surface temperature. The result can be utilized for
a numerical experiment of atmospheric motion and temperature ovoer Q
simple mountain-valley terrain.

| In two previous studies Fuh (1959, 1964) invesitgated the
influence of a sloping surface on radiation. the present study develops

a method for obtaining surface temperature by solving the equation of
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heat conduction of the soil and the energy balance equatién at the ground,
‘by including the terrain influence on radiation . The heat balance
cpndition at the ground surface over a mountain-vélley terrain at dif-
ferent locations across the valley is conceivably not the same. As a
consequence the ground surface temperature will vary from place to place,
at least in the daytime. The heat flux from the ground surfaée will
interact with atmospheric motion and temgperature to develop a very
complicated dynamic system. Our ultimate goal is to solve fhis cori-
plete system numerically for mountain-valley circulation., However, our
dmmediate interest is the formulation of the ground surface temrerature

of a typical valley terrain,

2.. Solar radiation on the sloping surface

. For an undulating mountain-valley terrain as shown in Rg. 1,
the mountain ridge on the east side of a north-south valley will cast
its shadow on the west side of the valley (Fig. 1). The solar radia-

tion reached on the slope may be written as

8 =5, cos i , (1)
where Sp = solar constant
1 = the acute angle between the sun's rays and the normal to
the slope 1 ,

Then cos 1 can be written as
cosi = cosasinh + sinacoshcosq‘ (2)

where o = the angle of inclination of the slope

the elevation angle

-3
"

= ~% (y<0, Af measured counter-clockwise from the south;
\J *o n .

¢ > 0, if measured clockwise from the south)
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.'o = azimuth of the sun

'n = azimuth of the normal to the slope. :
Using the laws of cosine and sina in spherical trignometly and tho
geometrical relationships of various angles shown in Fig. 2, one ob-
tains the following set of equations (e.g., see Robinson, 1966)

$Inh = singsind + cospcos§cosw - (3)
coshsiny, = cos8sinw S ()
coshcospcosy = singsinh - sinb ey (%)

where 8 = latitude

@ = declination of the sun

® = hour angle. |
Substituting (3),(4), and (5) into (2), eliminating ¥,, and rear-
ranging yields the radiation flux on the slope.

8 = S,(Jsing + Kcos s cosw + 'siritnsma. cos § sinw) (6)

where 'J = singcosa. - cosgpsinacosyy,
KX = cosgcosa + singsinacosy, , (7)

For an east (or west) -facing slope, ¢ = ';-zﬂ- (v = 7"—)

n
Se.w = S,(sinpcosasind + cospcosacosdcosw
. 0 .
+ sinacos d sinw) (8)
.I"or a horizontal surface, @ =0
: = singpsind + cosgcosdcosw 9)
Se,w = S §,( ing ¥ )

This can be applied to the level surfaces on the ridge and valley floor.
For a case on the valley floor, at point A in Fig. 1 for example, a




eritical hour-angle mc éorresponding to sunrise or sunset has to be

determined.
Since
: x
cos§ = = L = (10)
xXg *+ ¥Yg
ke e ; |
& & .
50 o 2 2 -
e ‘V/xa * By ‘ (11)
z

cos ¢

Q
|

(12)

then. ginh_ = =
7 g 2 2 2 2 + cos?
-\/xg i yg + zg. ‘\/ cot hgx c v

For the present case, where the valley axis is in the north-south di-

rection, § , = i'z“' '

Equation (12) then becomes

: " sin g,
sin hg =
'\/cot‘ hge + sinf A

Since -.’o' cannot be determined when the corresponding w is not known,

(13)

one cannot solve (13). Therefore we need another equation to determine
the relatiohship between w and Vo + This can be achieved by using the
relationships (3), (4), and (5) to obtain

, o . : :
’m3'° b sin‘w (1%)
. sin®v + (cos ¢tand + singcosw)?

- The critical lﬁc can be obtained by the ‘cut and try' method with given
@and § from




G I AR A TR

s

o AR b e s i S g S S s Y Y ke SN S .

Sin?m
sin®w + (cosgptané + singcosuw)?

L tgh - + e stn’m

il sin*w + (cosgtand + singcosw)?
1 . - E .a . .
=.[slmpsin6 + cosvwsbcosw], (15)

Another method to determine w. is to simpiy set Eq. (8) to zerc. : How-
ever, the angle @ has to be changed into the appropriate eritical so- -
lar elevation angle for the point in question.

By this method the solar flux of all positions on the mountain-
valley surface can be computed. If the physical surface of the moun-
tain-valley terrain is symmetrical and peripdic in space, the total
energy received in 24 hours will be the same for both e‘ast and west
slopes, However, the accumulated energy received at symmetrical positions
on opposite slopes will be differeht at any given ins'tant during the day.
For practical purposes one may just compute the flux every half hoﬁr
for some typical 1ocation;'.. For further computations, the data can be
interpolated for any time interval and position needed. This flux will
be used to determine the surface temperature and heat flux.

3. Long-wave radiation ;
The next most important item in the energy balance equation
after solar radiation is the effective long-wave radiation flux. Because

the mountain surface itself can screen away the IR radiation for a

: given azimuth §, and a given elevation angle h subtended by the mountain,

the offective IR flux can be written as (Fuh, 1964):




- n v :
E S dy Sh“) (es - eg) cos lcolg l.udh_.

-ﬂ
h £
+ Sﬂ day S " (eé - ee) cos lcos hdh | (16) -
-1 ha(?) - . oy g "

where eg = IR radiation intensity on the slope at the point in question
eg = IR radiation from the atmosphere
©e = IR radiation from the opposite slope

h(+)

elevation angle produced by the slope surface
(inclination @ ) itself in the direction .

In-tt;is study, ridge lines are assumed to be parallel as
shown schematically in Figure 1, and h(y ) for the elevation angle
of east and west slopes observed at Point A, hg and hc respectively,
can be written as i '

h; = aresin cos? ¥ ]%
cotz(hgx) + cos?

£ -
2

and hy = arcsin [ cosZ ¥ ]

cotz(hcx) + cos? ¥




The .anglo hc (¥ ) is tha elevation anzls dus to the slops itself whéro
the observation s:j.te stands,
~ If the IR radiation is isotropic within the mtegéation limits
; and the valley is infinitely long, the integral in Equation' (16) can be

evaluated and becomss

I = _%_'(.e}n-eg)s + .Z"(°m"°s)(1_"'1z"s)

where

S - ( (cos(hgx)nos(hcx))'cosa - (sin(hg;c)-sin(hcx)_-sin a )

Waen the black body temperatures are used, I at A is

-

IA i -Z-L[IH - o Ty - éTJﬂ [(cos Mo & hey)®

« cos & - (sin hgx = sin hey) slna:] .+ o(as 'Ls“ - Be'l';) S _(21)}

. where Iy = effective IR radiation flux (i.e. difference of IR radiation
between mountain surfaces and atmosphere) on a horizontal
surface

Ts = the absolute temperature of the surface at the point in
question

T, = the absoluto temperature of the opposite slope

o




- radiative flux as

1 TR

P +P, = the emissivity of the ocarth's surface at the point in
question, and of the opposite slope, respectively

hgx » hoy = elevation angle due to mountain ridges GH and CD respéqtivé]y
¢ = Stefan-Boltzmann constant. ' :

Since @ < 25 as assumed in the present model and hgx <o, and hg, Y

it is evident that

sin a(sin hgx - sin hcx) << (cos hgx + cos’h_ ) cos _Q_:

13

Farthermore Tg-T, is gensrally small. The ovérall affective IR radia- . ,

tion may be approximated as
1., = 15 (cosh . + cosh );:;:sa-
AT T gx cx’ - (22)

However the quantity Iy , defined as the effectlve IR radiatlon on a
horizontal surface, musi be calculated iteratively. We may use an
empirical formula for I developed by Brunt (1939), o0,

Iy = oTgy B-a-b@), - (23
where a =044 e ;
b =0.08
= surface vapor pressure in millibars
Tgy = the surface temperaturé at the point in question,
(In the present problem Tg is the temperature at the point A, w};i.ch
is used to calculate I, at A). Finally we may write the effective IR

I=tort (1 -2 -bye)(cos hy, + cosh Jeosa, (a1)

The value of I depends on the position on the mountain-valley surface

and can be calculated for each point on the surface. The surface temp-

10




erature in the expression for I remains to be determined iater by

solving the heat conduction equation of the soil and a system of themo-
hwdrodynanic equations of the atmosphere simultaneously.

l&. Heat conduction equation of soil and the boundary conditions :
* The general equation of the mountain-valley surface ﬁy be writ-
ten as : ;
D = D(x)
Using z to indicate the height above the fixed level surface, and
the height above the ground surface, ‘we.have
=D(x) + {
The heat conduction e"quation vhich governs the variation of the soil
temperature may 'be written approximately as

T S
—l
3t ks %7

where K = A /e o

Ag = thermal diffusivity of the soil ]

." g = density of the soil

¢g = specific heat of the soil

The boundary condition at the ground surface, after neglecting
scattering, precipitation and evaporation, and assuming the normal temp-
erature gradient to be about the same as the irertic_al temperature gra-

dient, will be approximately » o

s-l“'laz XSBC 23 v (5)

where S = solar radiation reached on the slope
I = long-wave exchange between the slope and the environment

" A\g= thermal diffusivity of the soil

1




A = eddy conductivity of the air (assumed constant in the

o

layer f.4m above ground, and may vary with time)
K o Tg = temperatures of the air and soil respectively.

Pr the boundary condition at { = ~e , T, is finite.

5. Solution of surface temperature

The differential equation of the heat conduction of_-t’he soil

¥
.
H
]
!
i
{
£
{
3
g
i
8
1
3
)
;
:

may be written in finite difference form for time differential. Assume

T, =% + Bz + ' (C.x,1) (26) J
where B = prescribed fc;; z>0, 1
and ©° B =0 for z<0.

Sl b

We designate the elevation of the valley floor as 2=0, Substituting

Ts into the finite difference equations of heat conduction of soil leads to

t +4t t
T~ - T - 3?1

&t « A [eg P B Y

t +4At

(27)

in which 2 is replaced by { near the surface. The solution of this

equation, obtained by varying the parameters and assuming that Ts't’ is
a known i\mcf.ion, and can be written as

Ts‘t+ét (x,c.t). = A(x)eYc. + peYe

o
+ oy Lsen v6 - e e ()

B 1
where -\./At " ).s/c 8P s e Applying the boundary conditions at z —> -e
leads to B' = 0. Next iie coefficient A(x) should be determined from

the energy balance equation at ( = 0 with analytical solutions of S

12




: : and I at each grid point.

Assuming the condition of the soil temporature at the air-soil
interface to be continuous,

we have the deta_iled expression of the

energy balance equatioh as

Lad s !
bz ; -

t +At t +At t +At
Ty 3 T c= T
ls.-rz =
# So (sinv cos @ - cos ® stn & cos qn) . ;

0
.

g1 : » sin 8 + (cos@ cos @ +sin @ sin v cos {,) €

s t +At
e cos 8§ cosw + sin Yp Slnocos slnm}

o (s P8 (1 - a-bg) -

>

e {cos hgx + cos hqx) cos o

Substituting Ts = To + Bz + T8(x,2,t),  3nto (29) and rearranging
. leads to

T i tHat
{ls_:_cs_. ...[—:-; +20T3(1 ...a.-b\'e':_)'(cos, hgx"' cos h., )cosa Ts} _

: - t+At / ' . .. i - ‘ : : -'A.. ¥ . | 5
= Plx,¥., 5 5 TR AT -

| Pt ) o
u!;&e

g At A =
r(x,?nlw) " 183"' Z-z- - — Az (To"’BZ(X))

i Bl B

. + 8 ((sln @Ccosa - SOs @ sina cos ?_n) sind +

. ol o *

+ (cos ¢ cosa + sing sin a cos§,) cos o cos w

e T T A 1
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el
ere—

* ¥, sin g, sina cosé sinw}tﬂt ..

..-;—'- Tk +4T,° Bz} (1 -a-b@ (cc;s hg.\: +cos h,,) cose . (31)

The soil heat flux at the ground surface ( ¢ = 0) can be obtained from
(28) as | ‘

oT,.*
Ag a'-'-—'—c

. -
-

tept ; . R ) e .
A = AgA(x)y + }iS“E”YC * e¥e ] .(-Y-aré t)dC'. . (32

: 3T t+pt
After substituting g -a—c-s-
b 4 . =°
at € =0 and solving for A(xg, we have

into the energy. salance equation

A = L)

: A - :
: j 0 i Yag +[Az + Zc'To’v(l ~-a ~-b-/e) (cos hgx + cos hc,") cos (x]

L | 0 A
v Y"}.SS coshy('. Tg'df - vy b S 20T3(1-a -bVe)
. - ) 1 5 Az v .

-
.

.. g o g,
* (cos hgx + cos hcx) cos a] S sinh y(* - '.l‘s't dag’
b - -0 . .

t+At ‘
e } ; (33)

Por a given location x and time t, A is constant and T 't+ 8t (y, ¢,

t+At

is deterninod. With known Tg't, To'""®% can be calculated if the temp-

erature of the air above the surface is known. Set

. 1 = .
L =2—; +l.za-r°3 (1 -a-bJe)(cos hgx +cos h_ ) cos ]

%




t+At

Then Tg' nay be written as
T .t+At o Ft"-At eYc 1( sY = L ) Y(C*’C ) dca
s (0% X y+L AgY + L S :

g2

0 P : t A e

(34)

At ground, Z = 0. The three integral terms in Eq. (34) are combined
to becone :

Y¢* A dc’
sy+LS(e iy %

From observations of soil temperature variation with depth Ts' may be

assumed without too much error as
: 1¢" '
T,' = Ge cos ( f£t +12C°).

Then

0
S e Y% T,'dg = G (v +l)cosﬁ:+lsinrt}
e (v+1)% 1

Rr integration, the time interval t= 30 minutes, K = 5k 10-3 cmzsec'1,

and Y £0.86 cn~'. Diurnal variation in soil temperature at a depth
of 50 cm is nearly zero at O'Neill, Nebraska, Aug. 31, 1953, based on
data obtainsd by Lettau and Davidson (1957). It follows that 1 £ .153
This means that 1 is negligible in comparison to ¥ . Neglecting 1
all together from (3%) yields an error less than 3%. For meso-scale

. ealculations this error is acceptable. Then T’ tray may be simply

written as

(35)




s t+At :
t+At
Ts' +4 l F lsx A (T t)

= + ] 2
Finally we have
: t+ At . StHAt
- F AsyY o ot) ’
T ‘ = To+Bz + (T

Eq. (36) should be solved simultaneously with the set of finite
difference equations governing the air temperature and motion in the
boundary layer. The solution can be obtained if the air temperature
at a height az above the surface at time t +at, and the ground sur-
face temperature at time t, are known. An initial rough but realis-
tic estimate of air temperature TV +' ! nay be made for the first
computation of Tst +A%Y With the flux at time t +ot one can com-
pute the atmospheric tempsrature Tt 224 from the set Qf governing
differential equations in the atmosphere. Continue this computation
iteratively to obtain Tst+n°t, where n 1s an integer one wishes to
assume. This approximated method was developed mainly for the purpose
of mountain-valley circulation studies. It can also be applied to
studies of micrometeorological problems as long as the geometry of the
terrain is simple. In the present model the point of interest, the
effective IR radiation on the surface Iy, is not directly calculated,
but rather is replaced by an empirical formula. So long as the su;-

face geometry is simple, a simple anlytical solution can be derived.
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5. Rosults and Discussion

Equation (36) is used to compute ground temperature for three
different positions in a valley located 5 miles north of Manchester Cen-
ter, Vermont. They are Point A on tho valley floor, Point B on the west
Alopo, and Point F on the east slops. The heights of Points B and F are
abou; 44om and 420m above Point A respectively. The ridge lines are 548m
above tue valloy floor and are 7.8km apart. Point A is approximately 2knm
horizontal distance from the west ridge. Tho average slope at Point F 4
is rather gentle, boing 6.3°. The slope on the west side varies from 12.5°
on tho lower half to 18.8° on the upper half where Point B is.

Other physical parameters used in the computation are as follows:

A = 0.239 cal cm""soc:""ciog‘1 a = 0.44

A = also varies as a function of b = 0.08

time(see Table 1)
Ag= 0.001 o =10
t = 1800 sec g = 140 cm
g 05 = 0.4 cal em™dog™! 8 = 20°
albedo = 0,15 s - @ = 43.16°

i - Table 1. Assumod variation of A with timo over tho course of a day.

hour 0 2 4 6 8 10 12 114 16 18 20 22 24
(EsT)

A (cal cm'11 05 .05 .06 .10 .24 ,28 .30 .30 .20 .12 .08 .05 .05
deg=1sec™1) :

The sunrise and sunset hours for Points A,B, and F computed
from this model are (0515, 1752 E.S.T.), (0445, 1735 E.S.T.), and (0515,
1911 E.S.T.) rospectivoly.

17




The air temperatures at the three points are recorded by ihexmo-
graphs located 1.4m above the gound. The data of August 7, 1957 taken
from Davidson and Rao (1953) are used in the computation and are shéwn
in Fgure 3 by dashed lines.

Since there is no observed ground temperature Ty at each site,
a reasonable initial Tg or T,' value has to be given for input. This
value 1is determined with a trial run using an apprOpriate.Ts.;r 1;' un-
til the result éonverges to a constant and its rate of change'is about
the same or slightly larger than that of air temperature at midnight for
& glven set of assumed values for parameters. Rr daily use, Tg can be
observed and there is no need for such trial runs.

Based on the physical configuration of the terrain and input
alr temperatures for each point, the corresponding computed groundvtemp-
eratures and upward heat fluxes under three different asSumptions of A
are shown in Figures 3 and 4 respectively. In Figure 3 the computed ground
temperatures for cases of constant A, variable A , and doubled value of
the variable A are denoted by light, heavy, and dash-dotted curveé. The
observed air temperatures ;re denoted by dashed curves. In Figure & éhe
computed upward heat fluxes for constant A , smaller variable): , and
larger variable ) cases are denoted by dashed, solid, and dash-dotted
curves respectively.

~ The computed sunrise and sunset hourg shown earlier are correct
because two different fbrmulés mentioned earlier give the s;me compu£ed

reéults. Besides the computed sunrise hour at Point B is the earliest,

. and the computed sunset hour at Point F is the latest, among the three

sites. All of these results are in close agreement with values from other

sources. e
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Figure 3. Observed diurnal air temperature (dashed curve),and computed diurnal
ground temperature for variable )\ (heavy solid curve), for constant X (light solid
curve), and for doubled variable A (dash-dotted curve), for Point A on the valley

floor, Point B on the west slope, and and Point F on the east slope of the valley.
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Examination shows that the computed ground temperafure reaches
the level of air temperature at each site about half an hour after sun-
rise. Then both air and ground temperatures start to rise. The times
before attalning maximum Tg of the individual site occur first on the
wost slope, then on the valley floor, and finally on the east slope in
Figure 3. This 1s as expected because of the present topographic config-
uration. Tg starts to drop generally in the afternoon but drops preci- '
pitously after sunset for Point A and just before sunset fbr Points B
and F. The phenomenon at Points B and F can probably bs attributed to
the large drop in air temperature, and to turbulence taking away heat
from the grbund and reducing ground temperature much faster., Another in-
teresting phenorionon.apparent from Figure 3 is that the daily range of
ground temperature is largest at the site in the valley, §eing a few de-
grees greatef than at the sites on the slopes. The differences in the
ranges of ground temperature arc in agreement with those of air tempera-
ture. This phenoronon appears in many valleys.

The results of the heat flux computations in Figure 4 have al-
most the same shape and magnitude for the three different cases of A .,
Aithough the ground temperatures T for different A 's are different at
a particular site, the changes in heat flux are slight. The reason is

that the product of the smaller ) with the large vertical temperature

gfadient (between the air temperature at 1.4m level and ground temperature)

1s nearly the same as the product of the larger ) with the smaller vert-

ical gfadient. The system adjusts itself so that the chenge in flux is gra-

dual. The trend in the order of occurence of maximum heat flux follows that

of the order of occurence of maximum temperature at the three sites. The
total heat flux which diffused due to eddy processes was greatest at Point

F. This is believed to be because it has the longest period of sunshine.
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Figure 5. Computed temperatures for variable vapor pressure, e,
(solid curve) and for zero vapor pressure (dashed curve).
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The computed maximum upward heat flux at all three sites is
around 0.9 cal cm?zmin'1. which has the same order of’naghituda as the
turbulent heat flux for different height ranges for free convection
over flat terrain observed by Taylor and Swinbank independently ( see
Priestley, 1959).

Computations for temperature and upward heat flux are also
made with two different assumptions of vapor pressure. The solid curves
denote the case for variable vapor pressure which is based on observations
made elsewhere for terrain with vagetatiqn. The dashed curves denote the
case for zero vapor pressure. It 1s seen that dry atmosphere yields low=-
er temperatures for both day and nighttime because of decreased long-wave
radiation from the atmosphere and thus more heat loss to space. Indeed
this is a purely idealistic case., The solid curve may be considered a
case of high vapor pressure. Other conditioms being equal, the variation
of T and heat flux due to change of vapor pressure may be bounded by these
two curves. For normal conditions, the curves should be closer to the so-
1id curves for both temperature and heat flux.

In view of the computed results whown in Figure 3, the eddy
diffusivity of heat, A , is important to the determination of ground
temperature. In this study prescribed values are used. However A should
be determined from the circulation model and solved from the goverming
set of hydro-thermodynamic equations in the atmOSpheiic boundary layer.
Alr temperature is also a very important factor in determining ground
temperature. Obtaining air temperature by solving the heat equation of
Aair. which includes eddy diffusion and long-wave radiation terms for air,
would be very useful.

In conclusion the computed results are very encouraging. Rirther
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improvement can be made for application to mountain-valley terrain. The
purpose of this study is to study 3-dimensional meso-scale circulations
in typical uneven topography. An attempt is being made to apjﬂy this idea
to mountain-valley terrain. Results are still some time to come.
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